
Cluster Computing 3 (2000) 113–124 113

Link contention-constrained scheduling and mapping of tasks and
messages to a network of heterogeneous processors

Yu-Kwong Kwok a and Ishfaq Ahmad b

a Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
b Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

In this paper, we consider the problem of scheduling and mapping precedence-constrained tasks to a network of heterogeneous
processors. In such systems, processors are usually physically distributed, implying that the communication cost is considerably higher
than in tightly coupled multiprocessors. Therefore, scheduling and mapping algorithms for such systems must schedule the tasks as
well as the communication traffic by treating both the processors and communication links as equally important resources. We propose
an algorithm that achieves these objectives and adapts its task scheduling and mapping decisions according to the given network
topology. Just like tasks, messages are also scheduled and mapped to suitable links during the minimization of the finish times of tasks.
Heterogeneity of processors is exploited by scheduling critical tasks to the fastest processors. Our experimental study has demonstrated
that the proposed algorithm is efficient and robust, and yields consistent performance over a wide range of scheduling parameters.

1. Introduction

One of the major goals of using a heterogeneous system
is to minimize the completion time of a parallel application
by exploiting the heterogeneous processing requirements
within the application [7,22]. To achieve this goal, a judi-
cious scheme is needed to properly schedule and allocate
the tasks of the application to the most suitable proces-
sors. In this study, we are interested in the static scheduling
of precedence-constrained tasks to a network of heteroge-
neous processors. Static scheduling is normally done at
compile-time with available information about the struc-
ture of the parallel application in terms of its task exe-
cution times, task dependencies, communication, and syn-
chronization [5,17,20]. The goal of static scheduling is
to allocate a set of tasks to a set of processors such that
the overall completion time of the application, called the
schedule length, is minimized1 while the precedence con-
straints among the tasks are preserved. Since this schedul-
ing problem is NP-complete [5,8,21] it is commonly tack-
led by using heuristics [12,13]. While each heuristic may
perform well under different circumstances, there are three
important criteria that must be considered for evaluating a
heuristic:

(1) Does the heuristic make realistic assumptions about the
application and architecture of the system?

(2) Is it problem-specific or can it work under a wide range
of parameters without compromising the solution qual-
ity?

(3) Does the complexity of the heuristic permit it to be
practically used for compile-time scheduling?

1 It should be noted that balancing the computational load among proces-
sors does not necessarily minimize the program completion time due to
the inter-task communications.

The first criterion relates to the assumptions made by
the scheduling algorithm about the program tasks and ar-
chitecture models. Indeed, to simplify the design of the
scheduling method, earlier approaches usually rely on sim-
plifying assumptions such as assuming all tasks to have
equal execution times, or ignoring the communication de-
lays among tasks altogether [5,17]. With the emergence of
a wide variety of architectures in recent years, the architec-
tural attributes such as system topology, message routing
strategy, overlapped communication and computation, and
processors heterogeneity, must also be taken into account by
a scheduling algorithm. The second criterion dictates that
the scheduling algorithm should generate good solutions
for a variety of applications and target systems. A schedul-
ing algorithm tailored for one particular application and
architecture may not generate efficient solutions on another
architecture [15,17]. The third criterion, which is related
to the execution time of the heuristic itself, is an impor-
tant consideration for effectively using it for compile-time
scheduling of large-scale applications [2].

The majority of algorithms that take into account inter-
task communication assume the availability of unlimited
number of processors [24,25]. These algorithms are called
the UNC (unbounded number of clusters) scheduling al-
gorithms [14–17,25]. The algorithms that consider lim-
ited number of processors are called the BNP (bounded
number of processors) scheduling algorithms [3,15,17]. In
UNC and BNP scheduling algorithms, the processors are
assumed to be fully-connected, and no attention is paid to
link contention or routing strategies used for communica-
tion. Processors and links heterogeneity are also ignored.
The UNC and BNP algorithms are also called clustering
algorithms because they merge tasks into clusters (bounded
or unbounded) [19]; the clusters may need to be mapped
onto the processors using a mapping algorithm [25]. A few
algorithms, which relax all of the above mentioned assump-

 Baltzer Science Publishers BV



114 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

tions and can handle a system connected via an arbitrary
network topology, are called the APN (arbitrary processor
network) scheduling algorithms. In APN algorithms, the
mapping of tasks to processors is implicit, and messages
are also scheduled while considering link contention.

Most algorithms belonging to the above three classes
use different forms of the classical list scheduling approach
[1,5,15,18,20,25]. The basic idea of list scheduling is to
assign priorities to the tasks, and then repeatedly execute
the following two steps until a valid schedule is obtained:
select from the list the task with the highest priority for
scheduling; and select a processor to accommodate this
task. The main drawback of this approach is that the static
priority assignment does not always lead to an optimized
task sequence for scheduling. Indeed, the weakness of a
list scheduling approach is that each task is scheduled in-
dependently without regard to the scheduling of subsequent
tasks. This adverse effect is particularly severe if message
scheduling, which is a difficult problem for a heteroge-
neous system, has to be considered. A later task may not
be able to occupy an earlier time slot because its incoming
messages cannot be scheduled earlier due to the inefficient
scheduling of previous messages. The idea of determining
priorities dynamically has been proposed [17,23,27] but it
increases the time complexity and still may not be able to
avoid making suboptimal scheduling decisions.

We are interested in APN algorithms that both schedule
tasks and messages on arbitrary networks consisting of het-
erogeneous processors and communication links. Schedul-
ing tasks while considering link contention for a heteroge-
neous system is a relatively less explored research topic and
very few algorithms for this problem have been designed.
One well-known algorithm is the dynamic level schedul-
ing (DLS) algorithm [23], which employs a dynamic list
scheduling approach. In this paper, we propose a new
algorithm, the primary objective of which is to generate
efficient solutions while simultaneously handles arbitrary
communication and execution costs in the parallel appli-
cation, schedules tasks and messages by considering link
contention as well as processors heterogeneity, and adapts
to arbitrary network topology. The algorithm has a prac-
ticable complexity and is suitable for regular and irregular
parallel program structures.

The remainder of this paper is organized as follows.
In the next section, we provide a formal problem state-
ment, followed by a detailed description and explanation
of the proposed algorithm. An illustrative example is used
throughout the section to explicate the features of the al-
gorithm. Section 3 includes some performance analysis of
the algorithm. Section 4 presents the experimental results.
The last section concludes the paper.

2. The proposed algorithm

In this section, we first formally define the scheduling
problem and the model used. We then explicate our pro-
posed algorithm, called Bubble Scheduling and Allocation

(BSA), by describing its constituent procedures. A small
example is used for illustrating the algorithm’s characteris-
tics.

2.1. The scheduling and mapping model

A parallel program is composed of n tasks {T1,T2,
. . . ,Tn} in which there is a partial order: Ti < Tj implies
that Tj cannot start execution until Ti finishes due to the
data dependency between them. Thus, a parallel program
can be represented by a directed acyclic task graph [3].
Parallelism exists among independent tasks – Ti and Tj are
said to be independent if neither Ti < Tj nor Tj < Ti.
Each task Ti is associated with a nominal execution cost τi
which is the execution time required by Ti on a reference
machine in the heterogeneous system. Similarly, a nomi-
nal communication cost cij is associated with the message
Mij from Ti to Tj . These nominal costs are obtained by
estimation techniques such as profiling and analytic bench-
marking [2,6,9–11,26]. Assume there are e messages where
(n − 1) 6 e < n2 so that the task graph is a connected
graph.

To model heterogeneity of the target system which con-
sists of m processors {P1,P2, . . . ,Pm}, heterogeneity fac-
tors are used. For example, if a task Ti is scheduled to
a processor Px, then its actual execution cost is given by
hixτi where hix is the heterogeneity factor which is deter-
mined by measuring the difference in processing capabili-
ties (e.g., speed) of processor Px and the reference machine
with respect to task Ti. Similarly, if a message Mij is
scheduled to the communication link Lxy between proces-
sors Px and Py, its actual communication cost is given by
h′ijxycij . An example parallel program graph and a het-
erogeneous processor network are shown in figure 1.

The start time and finish time of a message Mij from
Ti to Tj on a communication link Lxy are denoted by
MST(Mij ,Lxy) and MFT(Mij ,Lxy), respectively. Ob-
viously, we have MFT(Mij ,Lxy) = MST(Mij ,Lxy) +
h′ijxycij . The start time of a task Ti on processor Px
is denoted by ST(Ti,Px) which critically depends on the
task’s data ready time (DRT). The DRT of a task is de-
fined as the latest arrival time of messages from its pre-
decessors. The finish time of a task Ti is given by
FT(Ti,Px) = ST(Ti,Px)+hixτi. The objective of schedul-
ing is to minimize the maximum FT, which is called the
schedule length (SL).

2.2. Overview of the BSA algorithm

In a traditional scheduling algorithm, the tasks are first
arranged as a list using some priority measure and then each
task is scheduled one after another to a processor which
allows the earliest finish time. To find such a processor
in a heterogeneous target system where message schedul-
ing has to be handled, a routing table is also needed, as
in the DLS algorithm [23], for determining the most suit-
able route for messages in order to minimize the DRT. The



Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling 115

Figure 1. (a) A parallel program task graph; (b) a 4-processor ring heterogeneous system.

problem with using a routing table is two-fold: (1) the rout-
ing table has to be pre-determined, usually using shortest-
path algorithm, for the input target topology; (2) during the
scheduling process, the routing table, which has to be fre-
quently updated, may not give optimized routes. Checking
such routing information for every candidate processors in-
evitably results in high time complexity. Furthermore, the
routing information is usually maintained for only a few
common network topologies which may not be useful for
an arbitrary network.

The proposed BSA algorithm is different from traditional
scheduling schemes in several aspects. First, in the BSA al-
gorithm, the tasks are not fixed in one single list throughout
the entire scheduling process as in the traditional approach.
Initially, the tasks are all scheduled to a single processor –
effectively the parallel program is serialized. Then, each
task is considered in turn for possible migration to the
neighbor processors. The objective of this process is to
improve the finish times of tasks because a task migrates
only if it can “bubble up”. If a task is selected for mi-
gration, the communication messages from its predecessors
(some of which may remain in the original processor while
others may have also migrated) are scheduled to the com-
munication link between the new processor and the original
processor. After all the tasks in the original processor are
considered, the first phase of scheduling completes. In the
second phase, the same process is repeated on one of the
neighbor processor. Thus, a task migrated from the origi-
nal processor to a neighbor processor may have an oppor-
tunity to migrate again to a processor one more hop away
from the original processor. This incremental scheduling
by migration process is repeated for all the processors in
a breadth-first fashion. The advantage of this incremental
approach is that no pre-specified routing table is needed be-
cause the algorithm adapts its scheduling decisions to each

input topology, which may be arbitrary. More importantly,
the incremental scheduling of tasks and messages can lead
to optimized routes.

2.3. Serialization

The serialization process, which determines the order of
subsequent task migration, is a crucial step of the algorithm.
A parallel program can be serialized using many different
methods because there are many total orders which do not
violate the original partial order. In the BSA algorithm, the
serialization process is centered around a critical path of
the parallel program.

Definition 1. A critical path (CP) is defined as the set of
tasks and messages forming a path with the largest sum of
execution costs and communication costs.

In the case that there are multiple CPs, we select the
one with a larger sum of execution costs and ties are bro-
ken randomly. The CP is a crucial structure of a paral-
lel program because it is the longest execution path and
thus, timely scheduling of its tasks can potentially lead to
a shorter schedule length. However, to preserve the prece-
dence constraints among tasks, we cannot arrange all the
CP tasks first. Instead, in the serialization process, we
have to first consider a CP task’s predecessors, which need
not be CP tasks themselves. Such predecessors are called
in-branch (IB) tasks. The remaining tasks, which are nei-
ther CP tasks nor IB tasks, are called out-branch (OB)
tasks. This partitioning of the tasks into three disjoint cat-
egories induces a serial order of the parallel program, in
which CP tasks are arranged to occupy the earliest possible
positions, with IB tasks inserted among them, and OB tasks
are appended at the end.



116 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

To determine whether a task is a CP task, we can use
two attributes: t-level (top level) and b-level (bottom level).
The b-level of a task is the length of the longest path be-
ginning with the task. The t-level of a task is the length
of the longest path reaching the task. Thus, all tasks on
the CP have the same value of (t-level + b-level), which is
equal to the length of the CP. Based on this observation, we
can easily partition the parallel program into CP, IB, and
OB tasks by in O(e) time because the t-level and b-level
of all tasks can be computed by using depth-first search.
A task with a larger b-level implies that it is followed by a
longer chain of tasks, and thus, is given a higher priority.
The serialization process can be performed by an O(e) time
algorithm outlined below.

Algorithm Serialization
Input: a program task graph with n tasks {T1,T2, . . . ,Tn}.
Output: a serial order of the tasks.

1. compute the t-level and b-level of each task by using
depth-first search;

2. identify the CP; if there are multiple CPs, select the
one with the largest sum of execution cost and ties are
broken randomly;

3. put the CP task which does not have any predecessor
to the first position of the serial order;

4. i← 2; Tx ← the next CP task;

5. while not all the CP tasks are included do

6. if Tx has all its predecessors in the serial order then

7. put Tx at position i and increment i;

8. else let Ty be the predecessor of Tx which is not in
the serial order and has the largest b-level (ties are
broken by choosing the predecessor with a smaller
t-level);

9. if Ty has all its predecessors in the serial order
then put Ty at position i and increment i;
otherwise, recursively include all the ancestors of
Ty in the serial order such that the tasks with a
larger b-level are included first;

10. repeat the above step until all the predecessors of
Tx are in the serial order;

11. put Tx at position i and increment i;

12. Tx ← the next CP task;

13. append all the OB tasks to the serial order in de-
scending order of b-level.

For example, consider the parallel program graph shown
earlier in figure 1(a). Based on the nominal execution and
communication costs, the t-levels and b-levels of the tasks
are shown in table 1 and the tasks {T1,T7,T9} form the CP.
Since T1 is the first CP task, it is placed in the first posi-
tion in the serial order. The second task is T2 because it

Table 1
The t-level and b-level of each task in the task graph based on the nominal

execution costs.

Task t-level b-level

T1 0 230
T2 60 150
T3 30 140
T4 30 150
T5 30 50
T6 100 100
T7 120 110
T8 80 100
T9 220 10

Table 2
The task execution cost hixτi of each task Ti on the four heterogeneous

processors.

Task P1 P2 P3 P4

T1 39 7 2 6
T2 21 50 57 56
T3 15 28 39 6
T4 54 14 16 55
T5 45 42 97 12
T6 15 20 57 78
T7 33 43 51 60
T8 51 18 47 74
T9 8 16 15 20

is another unexamined predecessor of the next CP task T7.
After T2 is appended to the serial order, all predecessors
of T7 have been considered and, therefore, it can also be
added. Now, the last CP task, T9 is considered. It cannot
be appended to the serial order because some of its pre-
decessors (i.e., the IB tasks) have not been examined yet.
Since both T6 and T8 have the same value of b-level and
T8 has a smaller t-level, T8 is considered first. However,
both predecessors of T8 have not been examined. Thus, its
two predecessors, T3 and T4 are appended to the list first.
Next, T8 is appended followed by T6. The only OB task,
T5, is the last task in the serial order. The final serialized
list is as follows: {T1, T2, T7, T4, T3, T8, T6, T9, T5}.

In the serialization process, the tasks are all scheduled to
a single processor, called the pivot processor, which is se-
lected as follows. The first processor in the heterogeneous
system is considered and the corresponding heterogeneity
factor is multiplied to the nominal execution cost of each
task. Based on the set of actual execution costs, the CP
is constructed. This process is repeated for other proces-
sors and eventually the processor that gives the shortest
CP length based on actual execution costs is selected as
the first pivot processor. To illustrate, consider the actual
execution costs of the tasks on the four processor hetero-
geneous system as shown in table 2. Given the actual
execution costs, the CPs with respect to P1, P2, P3, and
P4 are {T1,T7,T9}, {T1,T2,T6,T9}, {T1,T2,T7,T9}, and
{T1,T2,T6,T9}, respectively. The CP lengths are 240, 226,
235, and 260, respectively. Thus, the first pivot processor
is P2 because the CP is shortest with respect to this proces-



Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling 117

sor. The serial order is {T1, T2, T6, T7, T3, T4, T8, T9,
T5}, which is different from that determined earlier using
nominal execution costs.

2.4. Tasks migration

After the parallel program is serialized to the first pivot
processor, tasks have to be considered for possible migra-
tion to the neighbor processors in order to improve their
finish times (bubble up). To determine whether a migra-
tion is beneficial, we have to compute the finish time of the
task on a neighbor processor. To compute the start time,
we need to know the DRT of the task, which in turn de-
pends on the scheduling of messages. We outline below an
algorithm for computing the finish time of a message on a
communication link between two processors.

Algorithm ComputeMFT
Input: a message Mij , a communication link Lxy on

which k messages {Mi1j1 ,Mi2j2 , . . . ,Mikjk} have been
scheduled, and FT(Ti,Pz) (note that Pz may be Px).

Output: MFT(Mij ,Lxy).

1. check if there exists some s such that:

MFT(Mis+1js+1 ,Lxy)

− max
{

MFT(Mixjx ,Lxy), FT(Ti,Pz)
}
> h′ijxycij

where s = 0, 1, . . . , k, MST(Mik+1jk+1 ,Lxy) = ∞, and
MFT(Mi0j0 ,Lxy) = 0;

2. if such s exists, use the smallest one to compute:

max
{

MFT(Misjs ,Lxy), FT(Ti,Pz)
}

+ h′ijxycij

which is returned as MFT(Mij ,Lxy) otherwise, re-
turn ∞.

Using ComputeMFT, we can determine the finish times
of every incoming messages of the task on a neighbor
processor. The maximum finish time is then the DRT of the
task. The corresponding predecessor which sends this latest
message is called the very important predecessor (VIP) of
the task. Specifically, we use the algorithm outlined below
for finding the DRT and VIP.

Algorithm ComputeDRT
Input: a neighbor processor Py , a task Tj , its set of pre-

decessors, and their messages to Tj
Output: DRT(Tj ,Py).

1. DRT(Tj ,Py) = 0;
2. for each predecessor Ti of Tj do:
3. let Px be the processor currently accommodating Ti;
4. if Px = Py then arrival-time = FT(Ti,Px);
5. else callComputeMFT and

arrival-time = MFT(Mij ,Lxy);
6. if arrival-time >DRT(Tj ,Py) then

DRT(Tj ,Py) = arrival-time; VIP = Ti.

After the DRT of the task on a neighbor processor is
computed, the potential finish time of the task can also be
determined, using the algorithm outlined below.

Algorithm ComputeFT
Input: a task Tj , a neighbor processor Py on which l

tasks {TP 1
y
,TP 2

y
, . . . ,TP ly} have been scheduled, and

DRT(Tj ,Py).
Output: FT(Tj ,Py).

1. check if there exists some t such that:

ST(TP t+1
y

,Py)−max
{

FT(TP ty ,Py), DRT(Tj ,Py)
}

> hjyτj
where t = 0, 1, . . . , l, ST(TP t+1

y
,Py) = ∞, and

FT(TP 0
y
,Py) = 0;

2. if such t exists, use the smallest one to compute:

max
{

FT(TP ty ,Py), DRT(Tj ,Py)
}

+ hjyτj

which is returned as FT(Tj ,Py); otherwise, return ∞.

Using ComputeFT, we can determine whether a task can
improve its finish time through migrating to a neighbor
processor of the pivot processor. If the finish time does im-
prove, the task is rescheduled to the neighbor processor and
its incoming and outgoing messages are also rearranged. If
the finish time does not improve, nevertheless a task will
also migrate provided that its VIP is scheduled to that neigh-
bor processor. The rationale behind this heuristic decision
is that if a task and its VIP are scheduled to the same proces-
sor, the successors of the task may subsequently improve
their finish times also. This process is repeated for all the
remaining tasks on the pivot. Then a neighbor processor is
chosen to be a new pivot. Thus, each processor in the het-
erogeneous system in turn will be assigned as the pivot in
a breadth-first manner. Throughout the entire bubbling up
process, messages are automatically routed in the migration
process of tasks from the pivot processor to other proces-
sors. There is no need to use a routing table. If the routing
of messages has to be static (as in some commonly used
networks, such as a hypercube that uses the E-cube routing
method), we can just put a constraint on the destinations
a task can migrate to. Moreover, the routes taken by such
messages are optimized routes in that, at every step, a task
migrates if its finish time is not increased.

Using the techniques discussed above, the BSA algo-
rithm can be formalized below. In the following, the pro-
cedure BuildProcessorList constructs a list of processors in
a breadth-first order from the first pivot processor.

Algorithm BSA
Input: a parallel program graph with n tasks {T1,T2, . . . ,
Tn} and a heterogeneous system with m processors
{P1,P2, . . . ,Pm}.

Output: a program schedule.

1. initial Pivot ← the processor that gives the shortest
CP length;



118 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

(a) (b)

Figure 2. (a) Intermediate schedule generated by the BSA algorithm after Serialization (schedule length = 238, total communication costs = 0);
(b) intermediate schedule after T3, T4, and T7 migrate to neighbor processors (schedule length = 218, total communication costs = 110).

2. Serialization(Pivot);

3. BuildProcessorList(Pivot);

4. while ProcessorList is not empty do:

5. Pivot ← remove the first processor from
ProcessorList;

6. for each Ti on Pivot do:

7. if FT(Ti, Pivot) > DRT(Ti, Pivot) or

VIP of Ti is not scheduled to Pivot then

8. for each neighbor processor Py of Pivot,

compute DRT(Ti,Py) and FT(Ti,Py);

9. if there is a neighbor processor P ′y such that

FT(Ti,P ′y) < FT(Ti, Pivot) then

10. make Ti migrate from Pivot to P ′y;

11. else if FT(Ti,P ′y) = FT(Ti,P ′y) and

VIP of Ti is scheduled to P ′y then

12. make Ti migrate from Pivot to P ′y.

The time complexity of the BSA algorithm is derived
as follows. The procedure BuildProcessorList takes O(m2)
time while Serialization takes O(n2) time. Thus, the domi-
nant step is the while-loop, which takes O(e) time to com-
pute the FT and DRT values of the task on each neighbor
processor. If migration is done, it also takes O(e) time.
Since there are O(n) tasks on the Pivot and there are O(m)
neighbor processor, each iteration of the while loop takes
O(men) time. Thus, the BSA algorithm takes O(m2en)
time. The correctness of the BSA algorithm is formalized
in the following theorem.

Theorem 2. The BSA algorithm generates schedules in
which precedence constraints are preserved.

Proof. We sketch a proof of this theorem by induction on
the number of migrations. First observe that in the pro-
cedure Serialization, the program task graph is serialized
by partitioning the graph into three categories: CP tasks,
IB tasks, and OB tasks. In the process, every IB tasks of
a CP task are considered first before the CP task itself is
put into the serial order. The OB tasks are also appended
according to their levels. Thus, Serialization produces a
serial order that preserves the precedence constraints. In
the task migration process, a task migrates only if its finish
time improves. And in the computation of potential fin-
ish times, the message scheduling and task scheduling are
examined according to the procedures ComputeMFT and
ComputeFT, in which there are inequalities that determine
schedulability based on precedence constraints. Note that
the inequalities capture the scheduling state of previous mi-
grations, which according to the induction assumption do
not lead to violation of precedence constraints. Thus, a task
or a message will not be inserted in a slot which leads to
a violation of precedence constraints. As such, both the
Serialization procedure and the task migration process will
not violate the precedence constraints, and therefore, the
BSA algorithm generates valid schedules. �

2.5. An example

To illustrate the novel characteristics of the BSA algo-
rithm, let us consider applying it to schedule the parallel
program graph shown in figure 1(a) to the heterogeneous
ring system shown in figure 1(b) with the actual execution
costs depicted in table 2. For simplicity, we assume that the
communication links are homogeneous; that is, h′ijxy = 1
for all messages Mij and links Lxy. Initially, the tasks
are injected by the procedure Serialization to the first pivot
processor P2 in the order: {T1, T2, T6, T7, T3, T4, T8, T9,
T5}, as we have shown in section 2.3. The resulting inter-
mediate schedule is depicted in figure 2(a). Note that the



Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling 119

(a) (b)

Figure 3. (a) Intermediate schedule after T8 and T9 migrate to neighbor processors (schedule length = 147, total communication costs = 200); (b) final
schedule after T3 migrates from P1 to P4 (schedule length = 138, total communication costs = 200).

actual execution costs on P2 are quite different from the
nominal execution costs. Then, tasks are considered for
possible migration. In the first phase, T1, being the first
CP task, does not migrate because its migration is not ben-
eficial. Also, T2 and T6 do not migrate because their finish
times cannot be improved by migration. However, T3 and
T2 migrate to P1 and P3, respectively, as their finish times
are improved. Note that the reduction of T3’s finish time is
contributed not only by the “bubbling up” process but also
by the heterogeneity of the processors – the execution cost
of T3 on P2 is 28 while on P1 is only 15. Similarly, T7 also
migrates to P1 since it can also be “bubbled up” and its exe-
cution cost is reduced. The resulting intermediate schedule
is shown in figure 2(b). After two more migrations from
the first pivot processor P2, the first phase is completed; the
intermediate schedule at this point is shown in figure 3(a).
In the second phase, the pivot processor is P1. Only T3

migrates while the other tasks cannot improve their finish
times. No more migration can be performed after this stage
and the final schedule is shown in figure 3(b). The schedule
length is only 138 which is considerably smaller than that
can be achieved on homogeneous processors.

3. Analytical performance on primitive structures

The BSA algorithm considers a large number of systems
parameters, in particular, the processor heterogeneity which
leads to the lack of symmetry in the problem. Thus, ex-
act performance analysis of the algorithm on general task
graphs and processor networks is very difficult. In this
section, nevertheless, we analyze the performance of the
algorithm on a basic graph structure: the fork set. An ex-
ample of a fork set is shown in figure 4. The fork set is a
basic building block of many general task graphs.

Given a fork set with parent Tx and k children (labeled
from T1 to Tk), without loss of generality, we assume that
for the fork set Fx,

cx1 + τ1 > cx2 + τ2 > cx3 + τ3 > · · · > cxk + τk.

First, we assume that the target system has m homogeneous
processors which are fully connected with homogeneous

Figure 4. A fork set Fx.

communication links and m > k. The optimal schedule
length SLfull

opt for the fork set on this system is given by

SLfull
opt = max

{(
τx +

j∑
i=1

τi

)
, (τx + cxj + τj+1)

}
,

where j is given by the following conditions:

j∑
i=1

τi 6 cxj + τj

and
j+1∑
i=1

τi > cxj+1 + τj+1.

Intuitively, the above optimal schedule length is obtained
by including the tasks to the processor holding the parent
task until the accumulated execution costs exceed the finish
time of the next task.

Next we analyze the optimal schedule length for the fork
set for a hypercube network with m processors (m = 2d). If
d > k−j (call this condition C1), then the optimal schedule
length SLhc

opt for a hypercube is equal to SLfull
opt . This follows

from the fact that all the tasks can be scheduled within one-
hop away from the processor Px to which the root task is
scheduled.

On the other hand, if d < k − j 6 Cdr , where Cdr
denotes the number of combination of choosing r objects
from d objects, some of the tasks have to be scheduled



120 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

on processors at two hops from Px. In this scenario, it is
difficult to obtain a closed form expression for the optimal
schedule length. Here, we impose one more constraint,
called C2, on the task graph:

cxt = K, 1 6 t 6 k.

That is, the communication costs are the same. With this
constraint, the ordering of tasks is preserved even though
some tasks are to be scheduled two-hop away from Px.
The optimal schedule length is then given by

SLhc
opt = max

{(
SLfull

opt +
s∑

i=j+d+1

τi

)
, (τx + 2K + τs+1)

}
,

where s is given by the condition

SLfull
opt +

s∑
i=j+d+1

τi 6 τx + 2K + τs

and

SLfull
opt +

s+1∑
i=j+d+1

τi > τx + 2K + τs+1.

The above optimal schedule length is obtained by in-
cluding the tasks with index larger than j + d in the subset
of processors holding the tasks with indices less than or
equal to j + d until the schedule length is longer than the
finish time of the next task to be scheduled two-hop away
from Px. Given the constraint C1, the analysis for the
cases in which some tasks have to be scheduled on proces-
sors which are three hops away from Px is similar. We
have the following result on the BSA algorithm.

Theorem 3. The BSA algorithm gives optimal schedule
length for a fork set Fx if:

(1) the processors are homogeneous and fully-connected
with homogeneous links; or

(2) the processor network is a homogeneous hypercube
with C1 satisfied; or

(3) the processor network is a homogeneous hypercube
with C2 satisfied.

Proof. First, we observe that according to procedure Se-
rialization, the tasks are injected in an increasing order
of indices to the pivot processor, call it Px. The tasks
are then examined for possible migration to the neighbor
processors one by one. Thus, for cases (1) and (2), only
those tasks with indices larger than j will migrate to the
neighbor processors. The resulting schedule length is opti-
mal. For case (3), assume that d < k− j 6 Cd2 . The tasks
with indices from j + 1 to j + d will migrate to the neigh-
bor processors of Px. Afterwards, tasks with indices from
j + d + 1 to s will not migrate to the neighbor processors
because they cannot start earlier according to the expres-
sions given earlier in the above discussion. A task Tt with

t > s, however, will migrate to the neighbor processors be-
cause it can start earlier. The task may eventually migrate
to processors which are at two hops from Px depending
upon whether it can start at a time τx + 2K + τt. As a
result, the BSA algorithm constructs an optimal schedule.
Similar arguments can be applied to the case when some
tasks have to be scheduled to processors at three hops in
an optimal schedule. �

4. Performance results

In this section, we present the experimental performance
of the BSA algorithm and also compare it with the DLS
algorithm [23], which was also designed for heterogeneous
systems. The DLS algorithm is also a greedy algorithm in
that it chooses a task for scheduling if its potential start
time is the earliest and it has the largest b-level.

In our experiments, we applied the two algorithms to
two suites of task graphs using a Sun Ultrasparc work-
station. The first suite consisted of regular graphs rep-
resenting a number of parallel applications including the
mean value analysis [2], Gaussian elimination [4], Laplace
equation solver [2], LU-decomposition [4], containing reg-
ular patterns of tasks and communication messages. Since
these applications operate on matrices, the number of tasks
(and messages) in their task graphs depends on the matrix
dimension N . Each application has its own equation in
terms of N for determining the exact number of tasks but
all of the equations are O(N 2). We generated ten graphs
for each application by varying N such that the graph size
varies from approximately 50 to 500 with increments of 50.
The average execution cost each task of the applications
is about 150. Note that the graph structure and relative
magnitudes of the execution costs in these applications are
fixed according to the underlying algorithm modeled by the
graph. However, the communication costs can be varied.
We used a parameter called granularity, which is defined
as the average execution cost divided by the average com-
munication cost in a graph. Within each type of graph,
we used three granularities: 0.1, 1.0 and 10.0. Thus, in
a fine-grained (i.e., granularity = 0.1) application, the av-
erage communication cost is about ten times the average
task execution cost. On the other hand, in a coarse-grained
(i.e., granularity = 10.0) application, the average commu-
nication cost is only about 10% of the average task ex-
ecution cost. In summary, the regular graphs suite con-
tained 90 graphs (three graph types, ten sizes, and three
granularities). The second suite of task graphs consisted
of randomly structured graphs with sizes also varied from
50 to 500 with increments of 50. The execution cost of
each task was randomly selected from a uniform distribu-
tion with range [100–200]. Again, three granularities (0.1,
1.0 and 10.0) were selected for each graph size. Unless oth-
erwise state, the heterogeneity factors (i.e., hix and h′ijxy)
were selected randomly from a uniform distribution with
range [1–50]. Thus, the nominal execution and commu-



Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling 121

Figure 5. Average schedule lengths for the regular graphs with different graph sizes using four different network topologies.

nication costs in each graph represented the costs of the
fastest processor.

To investigate the effect of processor network topol-
ogy (i.e., processor connectivity), we used four differ-
ent topologies in the experiments: 16-processor ring,
16-processor hypercube, 16-processor fully-connected net-
work, and 16-processor randomly structured topology. The
random topology was generated such that the degree of
each processor ranged from two to eight.

In our first experiment, we compared the schedule
lengths produced by the BSA algorithm with those by the
DLS algorithm. For the regular graphs, it turned out that
each algorithm generated similar performance for the three
types of applications and thus, we computed the average
schedule lengths across different applications. To exam-
ine the effect of graph size, we also computed the average
schedule lengths across the three granularities. These aver-
age schedule lengths for the four topologies are shown in
figure 5. From the plots, we make a number of observa-
tions:

• the BSA algorithm consistently outperformed the DLS
algorithm;

• the improvement was about 20% and increased slightly
with graph size;

• the improvement was slightly larger for lower processor
connectivity (e.g., a ring); and

• both algorithms gave shorter schedule lengths for higher
processor connectivity (e.g., a clique).

These observations can be explained as follows. First,
notice that the DLS algorithm selects a task for schedul-
ing if its start time is the earliest. This greedy decision is
made without regard to the scheduling of subsequent tasks
and hence, such a decision may be too “local” in that the
communication links are not properly utilized leading to
inefficient scheduling of communication messages of sub-
sequent tasks. Indeed, when we looked into the schedules
produced by the DLS algorithm more closely, we found that
there were many cases in which a task could not be sched-
uled to a better time slot due to the inefficient scheduling
of messages of previous tasks. The adverse effect of in-
efficient scheduling of messages and tasks was also more
profound for increasing graph size and decreasing processor
connectivity. In this aspect, the BSA algorithm has a better
strategy because the messages are incrementally scheduled
to suitable slots such that the finish times of tasks can be im-
proved. When the connectivity was high, both algorithms
generated shorter schedules because the message schedul-
ing was easier to handle.

The results for randomly structured graphs are shown
in figure 6. From these results, we can see that the BSA
algorithm is robust in that it also consistently outperformed
the DLS algorithm, despite that both algorithms generated
longer schedules compared with the regular graphs. Next,
we investigated the effect of granularity by computing the
average schedule lengths across the graph sizes. The results
for regular graphs are shown in figure 7. We can see that the
granularity had significant impact on the performance of the
scheduling algorithms. First, the schedule lengths increased



122 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

Figure 6. Average schedule lengths for the random graphs with different graph sizes using four different network topologies.

Figure 7. Average schedule lengths for the regular graphs with different granularities using four different network topologies.

sharply with decreasing granularity. At a low granularity
(e.g., 0.1), the message scheduling was a dominant factor in
determining the schedule length. Thus, the improvement of

the BSA algorithm over the DLS algorithm was also larger
for lower granularity. Finally, it is interesting to note that
the effect of network topology was less significant from a



Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling 123

Figure 8. Average schedule lengths for the random graphs with different granularities using four different network topologies.

Figure 9. Effect of heterogeneity.

granularity perspective. Similar conclusions can be drawn
from the results for randomly structured graphs, which are
shown in figure 8.

We also investigated the effect of heterogeneity. For this
purpose, we used ten different randomly structured task
graphs with 500-task each (the granularity was 1.0). We
chose the 16-processor hypercube topology and varied the
range of heterogeneity as follows: [1–10], [1–50], [1–100],
and [1–200]. Thus, a large range implies that there are more
slow processors in the system. Again we computed the av-
erage schedule lengths, which are shown in figure 9. As
can be seen, both algorithms generated longer schedules as
the heterogeneity range increased. However, the rate of in-
crease in schedule lengths generated by the BSA algorithm
was lower than that of the DLS algorithm. This indicates
that the BSA algorithm is more adaptive to a highly het-
erogeneous system. We also measured the running times
of both algorithms, which were about the same because the
two algorithms are of comparable time complexity.

5. Conclusions

In this paper we have presented a new algorithm, called
the BSA algorithm, for scheduling and allocation of par-
allel tasks onto message-passing heterogeneous architec-
tures using a novel task ordering strategy. The objective is
to generate efficient solutions while simultaneously taking
into account realistic parameters such as arbitrary execution
and communication costs, network topology, contention on
communication links, and heterogeneity of processors. The
distinctive feature of the BSA algorithm is that it can adapt
its tasks and messages scheduling decisions according to
the given network topology. Messages are incrementally
scheduled to suitable links during the optimization of the
finish times of tasks. Heterogeneity of processors is also
exploited by scheduling critical tasks to the fastest proces-
sors. Our performance evaluation study has demonstrated
that the BSA algorithm is efficient, robust, and able to
give consistent performance over a wide range of para-
meters.

Acknowledgements

This research was jointly supported by the Research
Grants Council of the Hong Kong SAR under contract
numbers HKUST619/94E and HKU7124/99E, and by a re-
search initiation grant from the HKU CRCG. A prelimi-
nary version of this paper appeared in the Proceedings of
the 1999 International Conference on Parallel Processing,
Aizu-Wakamatsu, Fukushima, Japan, September 1999.



124 Y.-K. Kwok, I. Ahmad / Link contention-constrained scheduling

References

[1] I. Ahmad and Y.-K. Kwok, On exploiting task duplication in parallel
program scheduling, IEEE Transactions on Parallel and Distributed
Systems 9(9) (September 1998) 872–892.

[2] I. Ahmad, Y.-K. Kwok, M.-Y. Wu and W. Shu, CASCH: A soft-
ware tool for automatic parallelization and scheduling of programs
on message-passing multiprocessors, IEEE Concurrency (2000) to
appear.

[3] M. Cosnard and M. Loi, Automatic task graphs generation tech-
niques, Parallel Processing Letters 5(4) (December 1995) 527–538.

[4] M. Cosnard, M. Marrakchi, Y. Robert and D. Trystam, Parallel
Gaussian elimination on an MIMD computer, Parallel Computing
6 (1988) 275–296.

[5] H. El-Rewini, T.G. Lewis and H.H. Ali, Task Scheduling in Par-
allel and Distributed Systems (Prentice-Hall, Englewood Cliffs, NJ,
1994).

[6] T. Fahringer, Estimating and optimizing performance for parallel
programs, IEEE Computer 28(11) (November 1995) 47–56.

[7] R.F. Freund and H.J. Siegel, Heterogeneous processing, IEEE Com-
puter 26(6) (June 1993) 13–17.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness (Freeman, 1979).

[9] A. Ghafoor and J. Yang, A distributed heterogeneous supercomput-
ing management system, IEEE Computer 26(6) (June 1993) 78–86.

[10] K. Hwang, Z. Xu and M. Arakawa, Benchmark evaluation of the
IBM SP2 for parallel signal processing, IEEE Transactions on Par-
allel and Distributed Systems 7(5) (May 1996) 522–536.

[11] M.A. Iverson, F. Ozguner and L.C. Potter, Statistical prediction of
task execution times through analytic benchmarking for scheduling
in a heterogeneous environment, in: Proceedings of Eighth Hetero-
geneous Computing Workshop (HCW’99) (1999) pp. 99–111.

[12] D. Kim and B.G. Yi, A two-pass scheduling algorithm for parallel
programs, Parallel Computing 20 (1994) 869–885.

[13] Y.-K. Kwok and I. Ahmad, Dynamic critical path scheduling: An
effective technique for allocating tasks graphs to multiprocessors,
IEEE Transactions on Parallel and Distributed Systems 7(5) (May
1996) 506–521.

[14] Y.-K. Kwok and I. Ahmad, Efficient scheduling of arbitrary task
graphs to multiprocessors using a parallel genetic algorithm, Jour-
nal of Parallel and Distributed Computing 47(1) (November 1997)
58–77.

[15] Y.-K. Kwok and I. Ahmad, FASTEST: A practical low-complexity
algorithm for compile-time assignment of parallel programs to mul-
tiprocessors, IEEE Transactions on Parallel and Distributed Systems
10(2) (February 1999) 147–159.

[16] Y.-K. Kwok and I. Ahmad, Benchmarking and comparison of the
task graph scheduling algorithms, Journal of Parallel and Distributed
Computing 59(3) (December 1999) 381–422.

[17] Y.-K. Kwok and I. Ahmad, Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors, ACM Computing Sur-
veys 31(4) (December 1999).

[18] M.G. Norman and P. Thanisch, Models of machines and computa-
tion for mapping in multicomputers, ACM Computing Surveys 25(3)
(September 1993) 263–302.

[19] M.A. Palis, J.-C. Liou and D.S.L. Wei, Task clustering and schedul-
ing for distributed memory parallel architectures, IEEE Transactions
on Parallel and Distributed Systems 7(1) (January 1996) 46–55.

[20] V. Sarkar, Partitioning and Scheduling Parallel Programs for Mul-
tiprocessors (MIT Press, Cambridge, MA, 1989).

[21] B. Shirazi, M. Wang and G. Pathak, Analysis and evaluation of
heuristic methods for static scheduling, Journal of Parallel and Dis-
tributed Computing 10(3) (November 1990) 222–232.

[22] H.J. Siegel, H.G. Dietz and J.K. Antonio, Software support for
heterogeneous computing, ACM Computing Surveys 28(1) (March
1996) 237–239.

[23] G.C. Sih and E.A. Lee, A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures,

IEEE Transactions on Parallel and Distributed Systems 4(2) (Febru-
ary 1993) 75–87.

[24] M.-Y. Wu and D.D. Gajski, Hypertool: A programming aid for
message-passing systems, IEEE Transactions on Parallel and Dis-
tributed Systems 1(3) (July 1990) 330–343.

[25] T. Yang and A. Gerasoulis, List scheduling with and without com-
munication delays, Parallel Computing 19 (1993) 1321–1344.

[26] J. Yang, A. Khokhar, S. Sheikh and A. Ghafoor, Estimating execu-
tion time for parallel tasks in heterogeneous processing (HP) envi-
ronment, in: Proceedings of the Fourth Heterogeneous Computing
Workshop (HCW’94) (1994) pp. 23–28.

[27] A.Y. Zomaya, M. Clements and S. Olariu, A framework for
reinforcement-based scheduling in parallel processor systems, IEEE
Transactions on Parallel and Distributed Systems 9(3) (March 1998)
249–260.

Yu-Kwong Kwok is an Assistant Professor in the
Department of Electrical and Electronic Engineer-
ing at the University of Hong Kong. Before join-
ing the University of Hong Kong, he was a visiting
scholar for one year in the Parallel Processing Lab-
oratory at the School of Electrical and Computer
Engineering at Purdue University. His research
interests include software support for parallel and
distributed computing, heterogeneous cluster com-
puting, and distributed multimedia systems. He is

a member of the IEEE Computer Society and the ACM. He received his
B.Sc. degree in computer engineering from the University of Hong Kong
in 1991, the M.Phil. and Ph.D. degrees in computer science from the Hong
Kong University of Science and Technology in 1994 and 1997, respec-
tively.
E-mail: ykwok@eee.hku.hk
WWW: http://www.eee.hku.hk/∼ykwok

Ishfaq Ahmad is an Associate Professor in the
Department of Computer Science at the Hong
Kong University of Science and Technology. His
research interests are in the areas of parallel pro-
gramming tools, scheduling and mapping algo-
rithms for scalable architectures, video compres-
sion, and interactive multimedia systems. He is
director of Multimedia Technology Research Cen-
ter at HKUST, where he and his colleagues are
working on a number of research projects related

to information technology, in particular in the areas of video coding and
interactive multimedia systems in a distributed environment using high-
performance computing for emerging applications. He has published over
100 technical papers in refereed journals and conferences. He has served
on the program committees of numerous international conferences, and
has guest-edited several journals. He is serving on the editorial board of
IEEE Concurrency, Cluster Computing, and IEEE Transactions on Cir-
cuits and Systems for Video Technology. He is a member of the IEEE
Computer Society. He received a B.Sc. degree in electrical engineering
from the University of Engineering and Technology, Lahore, Pakistan, in
1985. He received his M.S. degree in computer engineering and Ph.D.
degree in computer science, both from Syracuse University, in 1987 and
1992, respectively.
E-mail: iahmad@cs.ust.hk
WWW: http://www.cs.ust.hk/faculty/iahmad


